32 research outputs found

    A local to global principle for expected values

    Full text link
    This paper constructs a new local to global principle for expected values over free -modules of finite rank. In our strategy we use the same philosophy as Ekedahl's Sieve for densities, later extended and improved by Poonen and Stoll in their local to global principle for densities. We show that under some additional hypothesis on the system of p-adic subsets used in the principle, one can use p-adic measures also when one has to compute expected values (and not only densities). Moreover, we show that our additional hypotheses are sharp, in the sense that explicit counterexamples exist when any of them is missing. In particular, a system of p-adic subsets that works in the Poonen and Stoll principle is not guaranteed to work when one is interested in expected values instead of densities. Finally, we provide both new applications of the method, and immediate proofs for known results

    A survey on single server private information retrieval in a coding theory perspective

    Full text link
    In this paper, we present a new perspective of single server private information retrieval (PIR) schemes by using the notion of linear error-correcting codes. Many of the known single server schemes are based on taking linear combinations between database elements and the query elements. Using the theory of linear codes, we develop a generic framework that formalizes all such PIR schemes. This generic framework provides an appropriate setup to analyze the security of such PIR schemes. In fact, we describe some known PIR schemes with respect to this code-based framework, and present the weaknesses of the broken PIR schemes in a unified point of view

    On single server private information retrieval in a coding theory perspective

    Full text link
    In this paper, we present a new perspective of single server private information retrieval (PIR) schemes by using the notion of linear error-correcting codes. Many of the known single server schemes are based on taking linear combinations between database elements and the query elements. Using the theory of linear codes, we develop a generic framework that formalizes all such PIR schemes. Further, we describe some known PIR schemes with respect to this code-based framework, and present the weaknesses of the broken PIR schemes in a generic point of view

    Bounds for Coding Theory over Rings

    Full text link
    Coding theory where the alphabet is identified with the elements of a ring or a module has become an important research topic over the last 30 years. It has been well established that, with the generalization of the algebraic structure to rings, there is a need to also generalize the underlying metric beyond the usual Hamming weight used in traditional coding theory over finite fields. This paper introduces a generalization of the weight introduced by Shi, Wu and Krotov, called overweight. Additionally, this weight can be seen as a generalization of the Lee weight on the integers modulo 4 and as a generalization of Krotov’s weight over the integers modulo 2s for any positive integer s. For this weight, we provide a number of well-known bounds, including a Singleton bound, a Plotkin bound, a sphere-packing bound and a Gilbert–Varshamov bound. In addition to the overweight, we also study a well-known metric on finite rings, namely the homogeneous metric, which also extends the Lee metric over the integers modulo 4 and is thus heavily connected to the overweight. We provide a new bound that has been missing in the literature for homogeneous metric, namely the Johnson bound. To prove this bound, we use an upper estimate on the sum of the distances of all distinct codewords that depends only on the length, the average weight and the maximum weight of a codeword. An effective such bound is not known for the overweight

    Generalization of the Ball-Collision Algorithm

    Get PDF
    In this paper we generalize the ball-collision algorithm by Bernstein, Lange, Peters from the binary field to a general finite field. We also provide a complexity analysis and compare the asymptotic complexity to other generalized information set decoding algorithms
    corecore